#POFPS44

Environmental Agents and their Impact on Placental and Gestational Development

> Alaeddin Abukabda, M.S., D.M.D., Ph.D. Assistant Professor of Physiology Lake Erie College of Osteopathic Medicine

> > Conflicts of Interest

The author declares that there are no conflicts of interest.

#POFPS44 Outline

Background

•Birth Outcomes and the Environment

• Environmental Influences on Fetal Health

Potential Mechanisms

The Placenta

The Faroes Statement: Human Health Effects of Developmental Exposure to Chemicals in Our Environment – 2007

"The periods of embryonic, fetal and infant development are remarkably susceptible to environmental hazards. Toxic exposures to chemical pollutants during these windows of increased susceptibility can cause disease and disability in infants, children and across the human lifespan.

Among the effects of toxic exposures recognized in the past have been spontaneous abortion, congenital malformations, lowered birthweight and other adverse effects."

2007 Nordic Pharmacological Society. Basic & Clinical Pharmacology & Toxicology. 10273–75

Examples of Environmental Agents

• Air pollutants (ozone, particulate matter)

Cigarettes

• Bisphenol-A (BPA), phthalates

Lead, mercury

#POFPS44

Environmental Agents and Birth Outcomes

- Exposure of nonsmoking pregnant women to environmental tobacco smoke may be a risk factor for preterm birth, low birth weight, fetal death or miscarriage.
- Exposure to air pollution and particulate matter may be related to both low birth weight and preterm birth.
- A pregnant woman's exposure to lead and pesticides may cause preterm birth, low birth weight, and spontaneous fetal death or miscarriage.
- Environmental contaminants (e.g. lead) can affect menstruation, ovulation and sperm quality.
- Exposure to **endocrine disruptors** causes a decline in the sex ratio of males to females at birth.

Causes of Infant Mortality

- Over 22,000 infants died in the United States in 2017
- Five leading causes of infant death in 2017:
 - 1) Birth defects
 - 2) Preterm birth and low birth weight
 - 3) Maternal pregnancy complications
 - 4) Sudden infant death syndrome (SIDS)
 - 5) Injuries (e.g., suffocation)

Environmental Tobacco Smoke and Birth Outcomes

- Elevates the risk of delivering a low birth weight (LBW), preterm, or small-forgestational age (SGA) infant
- Exposure for at least 2 hours per day resulted in a mean birth weight reduction of 85 g and a twofold increased risk of LBW among infants of nonsmokers
- ${\scriptstyle \bullet}$ Dose-related effects of smoking resulting in a conception delay of approximately 2 months

Assoc gestational age de	iations be sliveries, l	tween ETS* PNSS*, 1989-	exposure 1994	and low birth	h weight	, preterm del	ivery, an	d email-fo	
				Maternal a	ge (years)			_	
		Nonsi	mokers		Smokara				
		<30		230		<30		≥30	
	OR*,†	95% CI*	ORt	95% CI	ORt	95% CI	ORt	95% C	
LBW•	0.97	0.76-1.23	2.42	1.51-3.87	1.39	1.01-1.93	1.69	0.95-3.	
Preterm births	0.92	0.76-1.13	1.88	1.22-2.88	1.00	0.73-1.37	1.42	0.75-2.	
							2.2.2.2		

Air Pollution and Particulate Matter and Birth Outcomes

- Particulate matter is a complex mixture of extremely small particles and liquid droplets.
- Particle pollution is made up of a number of components, including acids (such as nitrates and sulfates), organic chemicals, metals, and soil or dust particles (<u>http://www.epa.gov/pm/</u>).
- Characterized according to size due to the variation of health effects associated with particles of different diameters.

Air Pollution and Particulate Matter and Birth Outcomes

Decreased placental size and quality

Animal studies suggested that volumes of placental compartments and calibers of maternal blood spaces were reduced.

Fetal growth delay

Studies using ultrasound measurements of fetal growth found strong associations between fetal growth delay and maternal exposure during mid-pregnancy.

Small for Gestational Age (SGA)

Associated with low birthweight, preterm birth, and SGA births.

Pretern and trimester of	birth rat	e by PM _{2.5}	levels in	Ohio 2007	- 2010
	PM _{2.5} < 1	5 μg/m ³	PM _{2.5} ≥		
	n	% Preterm	n	% Preterm	p-value
First trimester	175,649	8.34	49,272	8.87	< 0.001
Second trimester	185,883	8.47	39,038	8.43	0.835
Third trimester	181,665	8.08	43,256	10.05	< 0.001
Entire pregnancy	200,259	8.27	24,662	9.99	< 0.001

#POFPS44

Heavy Metals and Birth Outcomes

Arsenic, cadmium and lead may compromise fetal health even at a low level through trans-placental circulation

- Prenatal cadmium exposure could impair steroidogenesis leading to suboptimal fetal growth and development
- $\ensuremath{\cdot}$ Lead exposure may interfere with calcium deposition in the bone, resulting in decreased fetal bone growth

 Arsenic exposure during pregnancy may contribute to placental insufficiencies leading to intra-uterine growth retardation via oxidative stress

#POFP544 Heavy Metals and Birth Outcomes

Comparison of the exposure level with different birth outcomes (n = 419).

Adjusted Urinary Heavy Metal Concentration (µg/g Creatinine)	Preterm Delivery ⁰			Low	Birth Weig	ght *	Preterm and Low Birth Weight		
	Yes (n = 80)	No (n = 339)	<i>p</i> -Value	Yes (n = 26)	No (n = 393)	p-Value	Yes (n = 18)	No (n = 401)	p-Value
Arsenic	73.2	74.2	1.000	89.0	73.8	0.500	84.2	73.9	0.490
Cadmium	0.8	0.8	0.743	1.4	0.8	0.020	1.4	0.8	0.014
Selenium	22.4	22.7	0.940	20.6	22.7	0.998	19.3	22.7	0.324
Lead	1.7	1.8	0.729	1.5	1.8	0.117	1.5	1.8	0.236

#POFP544 Heavy Metals and Birth Outcomes

Classification of naturally occuring metals by toxicity and hydrologic availability

N on too	ic .	L ow tostc	ty	Moderate to high toxicity				
Aluminum	Magnesium	Barium	Praseodymium	Actinium	Indium	Polonium	Uranium	
Bismuth	Manganese	Cerium	Promethium	Antimony	Iridium	Radium	Vanadium	
Calcium	Molybdenum	Dysprosium	Rhenium	Beryllium	Lead	Ruthenium	Zinc	
Cesium	Potassium	Erbium	Rhodium	Boron	Mercury	Silver	Zirconium	
Iron	Strontium	Europium	Samarium	Cadmium	Nickel	Tantalum		
Lithium	Rubidium	Gadolinium	Scandium	Chromium	Niobium	Thallium		
	Sodium	Gallium	Terbium	Cobalt	Osmium	Thorium		
		Germanium	Thulium	Copper	Palladium	Titanium		
		Gold	Tin	Hafnium	Platinum	Tungsten		
		Holmium	Ytterbium					
		Neodymium	Yttrium					

Phthalates and Birth Outcomes

 Associations have been reported between prenatal and early postnatal phthalate exposures and shorter anogenital distance as well as lower serum testosterone in newborns.

• Pre-natal exposure biomarkers have been associated with reduced gestational age.

#POFP544 Endocrine Disruptors and Birth Outcomes

- $\ensuremath{\cdot}$ Chemicals that, at certain doses (high or low), may act on the endocrine system.
- Endocrine disruptors are found widely in contaminated water, air, food, and household products, like plastics.
- BPA binds to estrogen receptor and may disrupt estrogen function

#POFP544 Endocrine Disruptors and Birth Outcomes

EXAMPLES OF ENDOCRINE DISRUPTING CHEMICALS

Chomical	Use	Mochanism	Health Effect
Diethyistikeisterol (DES)	Medication	Mimics estregen	In humans – female – vaginal cancer, reproductive tract abromalities; male – abromalities of the pents and testicles, semen abnormalities
Genistein	Naturally occurring in soybeans	Mimics estrogen, blocks testosterone	In adult humans – lowers cholesterol, may decrease breast cancer risk. In animals – infertility.
Bistranol A	Restn in dental sealants, lining of feed cans, and polycarbonate plastics	Nimics estrogen	In male mice – alters prostate size, decreases sperm production, affects behavior
Vinolozofin	Pesticide/fungicide	inhibits testasterone	In male rodents - feminization, nipple development, abnormal penis development
Polychiorinated biphenyls (PCEs)	No longer made; still found as a pollutant	whith thyroid hermones	In humans – delayed neurological development; IQ deficits
Dioxin	By-product of Inclustrial processes including inclueination	Decreases estroger: decreases testasterone; siters thyroid hormone	In female rodents – dolayed puberty, increased matrimary canoes, in male rodents – doceased bastoaterce, pents and besticular abnormalities, feminized sexual behavior, in humans – tecreased thyroid hormone levels; decreased testosterone; candets

#POFPS44

Potential Mechanisms – Barker Hypothesis

• Fetal origins of adult disease hypothesis.

- Fetal undernutrition in middle to late gestation leads to disproportionate fetal growth, programs later coronary heart disease.
- Not only coronary heart disease, but also diabetes, obesity, stroke and mental illness.

Potential Mechanisms - Developmental Plasticity

The ability of a given genotype to produce different phenotypes in response to different environments.

Part of the organism's "adaptability" to environmental cues.

The expressions of suites of genes, particularly during development or life history transitions, probably underlie the fundamental plasticity of an organism.

Provides the best chances of survival and reproductive success to organisms under changing environments.

 $\label{eq:constraint} Environmental conditions that are experienced in early life can profoundly influence human biology, child growth and maturation, and long-term health and longevity.$

Potential Mechanisms - The Placenta

- Exposure to environmental agents linked to reduced placental vascular density, efficiency, size, number
- Altered gene expression and vasoactive sensitivity
- dual biomarker to assess maternal and fetal health

#POFPS44 Summary

- Exposure to environmental agents affects birth outcomes
- Several mechanisms may be potentially involved and should be taken into consideration
- The placenta is a critical transient organ and is affected by environmental toxicants/toxins

#POFPS44 Questions

- Ambient particulate matter is harmless and should therefore not be studied by toxicologists.
 - True
 - False
- It is important for clinicians to become knowledgeable about toxic environmental agents.
 - True
 - False
- Since the placenta is a transient organs it should not be a priority for clinicians
 - True
 - False

